Time: 3 hrs.

Max. Marks 109

Note: Answer any FIVE full questions, selecting ONE question from each part.

PART - A

1 a. Draw and explain V – I characteristics of a Germanium Diode.

(05 Marks)

- b. Find the value of the series resistance R, required to drive a forward current of 1.25mA through a Germanium diode from a 4.5V battery. Write the circuit diagram showing all the value.

 (04 Marks)
- c. With neat diagram, explain the working of a half wave rectifier along with relevant waveforms. (07 Marks)
- d. Discuss in brief clipping circuit. Explain the working of a positive clipper with neat circuit diagram and relevant waveforms. (04 Marks)
- 2 a. Explain the working of a full wave rectifier using 2 diodes with neat diagram. Also derive the expressions for I_{dc} and I_{rms} of a full wave rectifier. (10 Marks)
 - b. Discuss in brief clamping circuit. Explain working of a negative clamper. (04 Marks)
 - c. Distinguish between Zener and Avalanche breakdown.

(06 Marks)

PART - B

3 a. Calculate the value of I_C , I_E and β_{dc} for a transistor with $\alpha_{dc} = 0.98$ and $I_B = 120 \mu A$.

(06 Marks)

- b. For the base bias circuit, $V_{cc} = 18V$, $R_c = 2.2K\Omega$, $R_B = 470k\Omega$, $R_{fe} = 100$ and $R_{BE} = 0.7V$. Find $R_{fe} = 100$ and $R_{fe} =$
- c. Discuss the ideal characteristics of an operational amplifier.

(06 Marks)

- 4 a. Explain the voltage follower circuit using operational amplifier. Mention its important properties. (05 Marks)
 - b. Design an adder circuit using Op amp to obtain an output voltage of $V_0 = 2[0.1V_1 + 0.5V_2 + 2V_3]$, where V_1 , V_2 and V_3 are input voltages. Draw the circuit diagram.
 - c. Design a voltage divider bias circuit to operate from a 12V supply with $V_{CE} = 3V$, $V_E = 5V$ and $I_C = 1$ mA, $V_{BE} = 0.7$ V. (07 Marks)

PART - C

- 5 a. With the help of a diode switching circuit and truth table explain the operation of an AND gate and OR gate. (06 Marks)
 - b. State and prove Demorgan's theorem for three variables.

(06 Marks)

- c. With truth table and logical expressions, give the design of a full adder circuit. Realize the circuit using i) Basic gates and ii) NAND gates. (08 Marks)
- 6 a. Perform the following conversions:
 - i) $(1234.56)_8 = (?)_{10}$
- ii) $(101101010101.101011)_2 = (?)_{16}$ iii) $(988.86)_{10} = (?)_2$
- iv) $(532.65)_{10} = (?)_{16}$
- v) $(ABCD.EF)_{H} = (?)_{8}$.

(05 Marks)

, 1 of 2

	b.	i) Subtract (1000.01) ₂ from (1011.10) ₂ using 1's and 2's complement method.	
		ii) Add (7AB.67) ₁₆ with (15C.71) ₁₆ .	(05 Marks)
	c.	Design a half adder circuit and realize using Basic gates and NAND gates.	(05 Marks)
	d.	What are Universal gates? Realise AND and OR gate using Universal gates.	(05 Marks)
		PART - D	.93
7	a.	Distinguish between a Latch and flipflop.	(04 Marks)
		Explain i) See beck effect ii) Peltier effect and iii) Thomson effect.	(06 Marks)
	c.	Explain the architecture of 8085 microprocessor, with neat diagram.	(10 Marks)
8	a.	Explain the working of a LVDT with neat diagram.	(06 Marks)
		List the difference between a microprocessor and micro controller.	(08 Marks)
	c.	Explain the working of a R - S flipflop with relevant circuit and truth table.	(06 Marks)
		PART - E	
9	a.	What is Modulation? Mention some of the need for modulation in communicati	on system.
			(OU MANIEM)

10 a. Define Amplitude modulation and derive the expression for AM wave with relevant waveforms. Draw the frequency spectrum. (08 Marks)

c. With block diagram, explain the working of a cellular mobile communication system.

b. With neat diagram, explain the working of a telephone system.

(06 Marks)

(08 Marks)

(06 Marks)

- c. An audio frequency signal 10 sin $(2\pi \times 500)$ t is used to amplitude modulate a carrier of $50 \sin(2\pi \times 10^5 t)$. Calculate
 - i) Modulation index.
 - ii) Sideband frequencies.
 - iii) Band width.
 - iv) Amplitude of each sideband.
 - v) Total power delivered to a load of 600Ω .

b. Give the comparison between AM and FM.

vi) Transmission efficiency.

(06 Marks)
